
AD1-R165 614 THE DASIC INSTRUCTIONAL PROORAN: CONVERSION INTO lp
NAINSAIL LANOUAGE(U) STANFORD UNIV CA INST FOR

MATHEMATICAL STUDIES IN THE SOCIAL S. H L DAGEFORDE

UNCLASIFE A PR 79 NPRDC-TN-78-11 NSSI23-76-C-1543 F/G 9/2 M

o-.

• • " . ,%'I

: • / -A

S.

I .

co ~ ~~~~ ~ NP*-N.81 PRL17

U.)~

THE~~~~~,~h BAI NTUTINLPORM

DTD
(0CTI

MM4

THE ~ ~ ~ 8 BAI I0TUCINA4?ORM

%

i-.., -

Technical Note 78-11 April 1978

THE BASIC INSTRUCTIONAL PROGRAM: CONVERSION
INTO MAINSAIL LANGUAGE

Mary L. Dageforde

Institute for Mathematical Studies in the Social Sciences

Stanford University
Stanford, California 94305 ._.-

Reviewed by
Jonn D. Ford, Jr.

.. ,**

Navy Personnel Research and Development Center
San .C 925

FOREWORD.

This research and development was Londucted in response to the Navy

Decision Coordinating Paper, Education and Training Development (NDCP-
Z0108-PN) under subproject Z0108-PN.32, Advanced Computer-Based Systems
for Instructional Dialogue, and the sponsorship of the Director, Naval
Education and Training (OP-99). The overall objective of the subproject
is to develop and evaluate advanced techniques of individualized instruc-

tion.

This is one in a series of six reports dealing with the BASIC (Begin-

ner's All-Purpose Symbolic Instruction Code) Instructional Program (BIP), .4....,'

which is a "tutorial" programming laboratory designed for the student who

has had no previous training in programming. The others concern the BIP
student manual (Note 1, 1978), supervisor manual (Note 2, 1978), system
documentation (Note 3, 1978), conversion of the student manual into the
MAINSAIL language (Note 4, 1978), and curriculum information networks for
computer-assisted instruction (Beard, Barr, Gould, & Wescourt, 1978). This
report describes the conversion of BIP itself into the MAINSAIL programming
language.

The work was performed under Contract N000123-76-C-1543 to Stanford

University. The contract monitors were Dr. John D. Fletcher and
Dr. James D. Hollan.

J. J. CLARKIN
Commanding Officer

Accesion For
NTIS CRA&
DTIC TAB .0
Unannounced

Justification.......

Dist. ibutio I .-."

Avdilability Codes ""

Avail and I orist Special

Aij".

ill . "

SUMMARY

The BASIC Instructional Program (BIP) is a "hands-on laboratory" that

teaches elementary programming in the BASIC language. This report sum-

marizes the rewriting of BIP from SAIL, a programming language available

only on PDP-10 computers, into MAINSAIL, a language designed for port-

ability on a broad class of computers. .

The introductory section describes BIP and tells the reason for wanting

to rewrite it in a more machine-independent language. Section 2, the main

body of the report, discusses the actual rewriting of BIP in MAINSAIL, and

in particular, the redesign that was necessary to make BIP more machine-

independent. Section 3 describes MAINSAIL improvements over the SAIL version,

and Section 4, the current status of MAINSAIL, BIP, and possible future develop-

ments.

vr

.

CONTENTS

P age ~

SECTION 1. INTRODUCTION. 1

1.1 Description of the BASIC Instructional Program. 1
1.2 Original Plan: To Rewrite in BASIC 2
1.3 Final Language Decision: MAINSAIL. 3

SECTION 2. THE REWRITING OF BIP INTO MAINSAIL 5

2.1 Initial Code Compatible with Both SAIL and MAINSAIL Compilers .* 5
2.2 The Main Data Structures. 5
2.3 File Names 6
2.4 Space Saving. 7
2.5 History Files 7
2.6 Data and Tfie Information 7

SECTION 3. IMPROVEMENTS OVER THE SAIL VERSION OF BIP. 9

SECTION 4. CURRENT STATUS AND POSSIBLE FUTURE DEVELOPMENTS 11

REFERENCES 13

*REFERENCE NOTES 13

vii

SECTION 1. INTRODUCTION

The BASIC Instructional Program (BIP) is a sophisticated computer-
based laboratory for instruction in elementary programming in the BASIC
language. It was developed as an experimental system on the 1ISSS PDP-1O
research computer facility in a specialized high-level programming language
called SAIL' (Reiser, 1976),'which is presently available only to the PDP-1O
user community. Thus, a proposal was made to rewrite BIP in a more machine-
independent language, so that it could be implemented on other (notably,
smaller) systems.

1.1 Description of the BASIC Instructional Program

\BIP is a "'utorial" programming laboratory designed for students who have
had no previous training in programming. These students work their problems
at an interactive terminal under the constant supervision of the instructional
program, which offers hints or assistance at their request. BIP monitors each
student's programming attempts, continually updates its model of the student's
knowledge, and uses an information network representation of the curriculum
to allow individualized selection of the programming problems given to the
student. Since BIP runs in an interactive environment, the student receives
immediate feedback about any syntax errors and information about other errors
as soon as they are detected. These features keep the student from going too
far down the wrong track without some warning. BIP's interpreter is built
into the instructional program so that further assistance is available after
the first error message. -..

BIP has been used successfully by students at Stanford, at the U.S.
Naval Academy, and at local colleges with access to the DfSSS instructional -
facility.

The BIP system, as developed in SAIL and described in Barr, Beard, and
Atkinson (1976), is composed of ten major subsystems:

1. BASIC Interpreter--Responsible for identifying syntax and runtime
errors. Includes standard debugging and editing commands.

2. Program error analyzer (ERROR DOCTOR)--Identifies the structural
bugs in student programs.

3. HELP system--Gives advice and references to the off-line student

manual based on cues from the first two systems.

4. Solution Checker--Verifies that the student's program does in fact
solve the problem.

5. The curriculum and the BIP Student Manual--A large set of program- r
ming problems, with hints and model solutions, and the off-line manual
that students use as a reference during the course.

6. Curriculum Information Network and student model--Describes the
structure of the curriculum and current abilities of the student,
so that task sequencing can be individualized.

1.i

-- - - ," -- r - --. - woZr T ' Z . j '-' Z'v - . --.- - - - . -. - ---

7. Instructor/Supervisor capabilities--Examples are enrolling students,
monitoring their progress, sending messages, and responding to com-
plaints.

8. The graphics debugging package (FLOW) and graphics flowcharting
option (REP).

9. The data collection facility-Used to save "protocols," or records
of student sessions.

10. The student file storage system--Used to allow students to save up
to ten of their programs at a time.

FLOW and REP (8 above) are the only parts of SAIL BIP that have not yet beenwritten for MAINSAIL BIP. Before they can be implemented, a machine-

independent display package must be written to access terminal-dependent
procedures.

1.2 Original Plan: To Rewrite in BASIC

The original proposal was to rewrite the BIP instructional system in
the BASIC programming language, the same language that BIP teaches. Since
BASIC is available on more computer systems than any other programming
language, this would allow the test and evaluation of the BIP course in a
wide community of users. Further, BASIC is easy to implement on a small
(relatively cheap) computer, fully interactive, and fairly easy to learn.

The BASIC language, however, is not well suited for the development of
programs as large and complex as the BIP system. It has neither the ver-
satility nor the power of ALGOL-like languages (e.g., SAIL and LISP). To
implement the instructional laboratory in BASIC would require considerable
modification and redesign.

Another difficulty in trying to rewrite BIP in BASIC is that, although
it is available on almost all general-purpose computers, most manufacturers
have developed a unique dialect of the language. This has caused serious
problems in transporting even small BASIC programs from one site to another,
since syntax changes are almost always necessary. Changes of this nature to
a program as large as the BIP system would make a truly transportable system
unfeasible.

Finally, there are considerable difficulties involved in rewriting the
code in BASIC for a small computer, primarily because of the restrictions of ".
the BASIC language (no recursion, no string scanning, and small segment size).
BIP's Curriculum Information Network and the student model (which form the
data base of the task-selection algorithm) make extensive use of the associa-
tive data structures available in the SAIL language; and the syntax parser
is thoroughly recursive. These subsystems would be very difficult to imple-
ment in BASIC.

2

i ..- . . . ~.*~ . * *.

I

1.3 Final Language Decision: MAINSAIL

MAINSAIL (MAchine-INdependent SAIL) (Wilcox, 1977a) is a language
being developed at the Stanford University Medical Experimental (SUMEX)
Computer Facility. MAINSAIL has evolved from SAIL, which was developed
in the late 1960's at Stanford's Artificial Intelligence Laboratory.
SAIL was designed for execution on a PDP-10 computer with the TOPS-1O
operating system. MAINSAIL, as reflected in its name, provides cap-
abilities similar to those in SAIL independent of the underlying computer
system (Wilcox, 1977b). It is designed to be powerful and efficient, with I
a high degree of portability on a broad class of computers. In fact, if
design goals are met, any program written in pure MAINSAIL will be able to
be run on any computer (including some minicomputers) that has a MAINSAIL
compiler--regardless of differing word sizes, operating systems, numbers
and types of registers, etc. It is designed for the development of port--'
able software, such that programs can be transported, with no alteration,
among all implementations.

Any general-purpose computer with a reasonably powerful instruction set,
suitable data formats and addressability, sufficient address space, a file
system, and an interactive terminal, should be capable of supporting an
implementation of MAINSAIL. MAINSAIL is currently running on PDP-l0's .
with both TENEX and TOPS-10 operating systems, and is under development for
PDP-II's with three operating systems: RTll, RSXII, and UNIX. A number of . -

other implementations (e.g., TI-990, HP-3000, IBM-370, INTERDATA) are under
consideration.

Because it is similar to SAIL, and because it was designed expressly It.
for portability, MAINSAIL was found to be ideally suited for the trans-
lation of BIP. Any computer that supports MAINSAIL will be able to run
the MAINSAIL version of BIP without modifications.

3L

illllV

. .

• ~~~~.".. - 2 " - - ! i'- - -l'

SECTION 2. THE REWRITING OF BIP INTO MAINSAIL

2.1 Initial Code Compatible with Both SAIL and MAINSAIL Compilers

When the MAINSAIL translation was begun in October 1976, MAINSAIL's
first implementation, on a PDP-10 (the computer on which the translation
was done), was not yet completed. Therefore, for several months, it was %

necessary to write code that was acceptable to both the SAIL and the
MAINSAIL compilers. This was accomplished by writing pure MAINSAIL code
as much as possible, but using macros and procedures to describe to the
SAIL compiler the SAIL equivalents of various MAINSAIL system procedures,
reserved words, etc. Conditional compilation was also used occasionally;
that is, sometimes two segments of code would be written to do the same
type of thing, one for the SAIL compiler and the other for the MAINSAIL
compiler (a macro that was set just before using either compiler deter-
mined which segment of code was compiled).

Thus, the SAIL compiler "understood" the MAINSAIL code, and the modules
that were written during the first few months of the translation (notably,
the parser and the interpreter) were successfully compiled and tested by
the SAIL compiler. Then, in April 1977, when MAINSAIL was up on the PDP-10,
BIP was compiled and run more often with the MAINSAIL compiler. It was
still occasionally compiled with SAIL because of the availability of a good
symbolic debugger called BAIL (Reiser, 1976). (A debugger for MAINSAIL is
now being written.) However, since May 1976, the MAINSAIL compiler has been

used exclusively, and most of the code written since then has been solely
for the MAINSAIL compiler.

2.2 The Main Data Structures

BIP was written before the record data structure capability was added
to SAIL, at a time when LEAP was the only facility available for data storage
and retrieval other than arrays. As mentioned in the Introduction, SAIL BIP
made extensive use of LEAP structures that were replaced by records in theMAINSAIL version.L-

LEAP provides high-level data structures, such as sets and lists, and
operations on those structures, such as union, intersection, removal and
insertion of elements, etc. LEAP also has an associative data store of
triples that allows one to store and retrieve information based on relations
between specified elements. Take, for example, a "Skill of" relation. If
the programmer has formed associations such as "Skill of Task8 is 2" and
"Skill of Task8 Is 8," etc., he can then perform searches to find the set
of skills in task 8 by having the LEAP search routines return a set of
triples whose first component is "Skill of" and whose second component is
"Task8."

Records provide a means by which a number of closely related variables
may be allocated and manipulated as a unit, without the overhead or limita-
tions associated with using parallel arrays and without the restriction that
the variables all be of the same data type. Each record is an instance of
a user-defined record class, which serves as a template describing the various
fields of a record. In the example above, instead of forming a "Skill of
Task8" association for every skill in task 8, and then later asking LEAP to
form a set of the skills in task 8 by searching for all triples whose first

5

-------------------.. .--.

component is "Skill of" and whose second component is "Task8," we could
build up and keep the "set" readily available ourselves, by putting the
task 8 skills in a linked list of records. A record class called "skill"
could be defined to have two fields, one for a skill number and the other
for a pointer to the next record in a linked list of skills. We could
form a record of the class "skill" for each skill in task 8, and if the
skills are 2, 5, and 12, then the linked list could be pictured as

r-------I------- r------- iS2 i- -- >: 5 J- :-->I 12II L 12

One of the main data structures in MAINSAIL BIP is a linked list of
records, one for each task. The thirteen fields of each record hold various
information needed by BIP, including the task name, its number, the location
in the TASKS file of its description, model solution, and hints, a pointer
to the linked list of its skills (as described above), etc. See Section 2.2
of Note 3 (1978) for a more detailed description of the task records.

LEAP was used extensively throughout the SAIL version of BIP, not neces-
sarily because it was the best of all programming structures for what was
needed, but because it was the only major data storage and retrieval method,
other than arrays, available in SAIL at the time. The high-level LEAP
structures have to be very general--usually more general (and thus less
efficient) than needed in any particular instance in BIP, and the LEAP syntax
is often confusing and obscure. MAINSAIL does not support LEAP because the
runtime code for it would be excessive and because most of the capabilities
provided by LEAP are easily implemented with records. The use of records
instead of LEAP in the MAINSAIL version of BIP did not cause any loss in
clarity, simplicity, or flexibility--in fact, it led to a number of simplifi-
cations, both conceptually and in implementation.

2.3 File Names

File names on different computers have different length and starting
character specifications. On some computers, they may be a maximum of six
characters long; on others they may be almost as long as the user desires.
Some computers allow the starting character to be either a number or a letter,
whereas others specify that it must be only a letter. Thus, in order for the
MAINSAIL BIP file names to be truly "machine-independent," they all begin
with letters and are a maximum of six characters in length.

The format of student history file names, for example, is <student
number>.HST in the SAIL version of BIP. In the MAINSAIL version, it is
HST<student number>. (Note that 999 is the highest possible student number,
since a four-digit number would make the history file name seven characters
long.)

As another example, students are allowed to save up to ten of their
programs for later use. The file names for these in SAIL BIP is

<student number>.<whatever name the student assigns to the file>. .

6 °- .

S *""" .

..

W.1c
* L

In the MAINSAIL version, students may still assign whatever names they
wish to their programs, but the file names under which the programs are
actually saved are completely different. They are of the format S<student
number>F<file number>, where <file number> is a number between 0 and 9.
A ten-element array called stuFile holds the names assigned by the students.
For example, if student number 88 saves his first program under the name
"OPERATOR," then stuFile [0] = "OPERATOR" and the name of the file actually
saved is $88FO. Between sessions, the student-assigned names are saved in
the student history (Section 2.3 of Note 3, 1978).

2.4 Space Saving

The SAIL version of BIP requires a very large space, in particular for
strings. All the model solutions and task descriptions for the 93 program-
ming tasks are kept in memory-resident string arrays. So are all the error
messages (nearly 100), the help messages (nearly 400, some of which are 300-
400 characters long), and one-line descriptions of each of 83 programming
skills. The PDP-10 has enough space for these strings, but many other com-
puters, especially minicomputers, do not. Therefore, space-saving measures
were taken in the MAINSAIL version of BIP.

Instead of being stored in string arrays, all the hel, messages, error -
messages, and skill descriptions are on a file called MSGS. Each group of
messages is on a separate page of MSGS, in order. The beginning of each

page has pointers to the start of all the messages on that page. Given a %
page and a message number, a specific BIP procedure will copy the appropriate
message from the file MSGS.

All of the task information--task descriptions, hints, model solutions,
etc.--is kept on the file TASKS, and the curriculum data structure (Section
2.2 of Note 3, 1978) contains pointers into that file so that appropriate
information can be efficiently accessed when needed. ..-.

2.5 History Files

Each individual student's personal history file is a data file used to
store information about the student's current state (what task he is cur-
rently working on, how many tasks completed so far, etc.), and past performance
on tasks and skills. SAIL BIP uses 36-bit words to save information in the
history for each task and for each skill. The 36-bit assumption is clearly
machine-dependent, since some computers have 16-bit words, some 32-bit words,
etc. MAINSAIL has a data type called bits for representing a short sequence
of bits. It will support at least 16 bits (independent of the word size of
the host machine), and that is the number used in each element of the student
history in MAINSAIL BIP.

2.6 Data and Time Information

Saving date and time information, such as the amount of time spent on
each task, the date of the last sign on, etc., would be useful and of interest
to the BIP Supervisor. This was done in the SAIL version of BIP. Again,
this type of information is accessed in a machine-dependent manner, using
TENEX JSYS calls. For the MAINSAIL version, two simple machine-dependent

7

..................................C

procedures (allowed by the MAINSAIL qualifier CODED) are all that are
needed for each implementation. So far, they have only been written for
the PDP-10.

Some implementations will be unable to provide date and time informa-
tion at all, and conditional compilation is used to allow for either situa-
tion. Before compilation of the BIP system, a macro called haveDaTime must
be set to TRUE if the machine-dependent procedures have been written for
the implementation, and FALSE otherwise. If FALSE, then all the code for
calculating, printing, and saving the date and time information is simply L
not compiled.

8

.* * * . * *.

.

SECTION 3. IMPROVEMENTS OVER THE SAIL VERSION OF RIP

The fact that the MAINSAIL version of BIP is machine-independent,
while the SAIL version is limited to a PDP-10 with a TENEX operating system,
and yet does all that the SAIL version does (excluding the graphic program-
ming aids) is of course itself a tremendous improvement. But a number of
other improvements in efficiency and design were also made. Analysis of the
SAIL version prior to writing the MAINSAIL version sparked ideas for improved A
code and algorithms and revealed some bugs, which were promptly fixed.

The SAIL version of BIP was written, expanded, and improved by a number
of people over a period of years. The project described in this report pro-
vided an ideal opportunity for one person to analyze the system developed
by those people, learning about its design, its strengths and weaknesses,
and then to rewrite it all, using what had been written as a base and yet
redesigning algorithms and data structures where improvements could be made
(or where changes had to be made for machine-independence). Important space-
saving measures, as described in Section 2.4, were taken, and virtually every

* procedure had minor improvements in code that contributed to the overall im-
provement in efficiency and design.

Major redesign was required in order to use record data structures in
place of the extensively-used associative data structures (LEAP) in the

*SAIL version. The new design could also be considered an improvement in
clarity and -ase of implementation. An extreme example is the ERRDOK module.
The SAIL version used a number of complicated LEAP structures, most of which
were not related to the actual function of the ERRDOK procedures. (At the
time that ERRflOK was written, there was some hope of using its complicated
information about the structure of the student's program in a more sophisticated
solution checker.) Only two small linked lists of records are used in the
MAINSAIL version to perform the same functions actually implemented in the

* SAIL version (see Section 6 of Note 3, 1978).

9

SECTION 4. CURRENT STATUS AND POSSIBLE FUTURE DEVELOPMENTS

All the subsystems in the SAIL version of BIP that were listed in
Section 1.1, except for the terminal-dependent graphics features, have
been implemented in MAINSAIL. MAINSAIL BIP is capable of running on all
PDP-10 computers that have either TENEX or TOPS-10 operating systems, and
it will be put up on PDP-ll's when MAINSAIL is available on them. It should
be able to run on any computer that has MAINSAIL.

The BIP Student Manual (Note 4, 1978) has been modified to conform

with the MAINSAIL version of BIP. Although BIP is a "self-instructional" .'-

system, a Supervisor's Manual has been written to explain the goals, methods, ..-

and operation of the system to supervisory personnel (Note 2, 1978). Also,
-* it includes documentation of all necessary clerical capabilities, such as
S'. .registering and terminating students, examining their progress, and adding

special programming tasks.

Complete documentation has been written to describe all the programming
- modules that comprise the MAINSAIL BIP system including the BASIC interpreter,

the task-selection algorithm, the curriculum, the solution checker, the help
system, and collection of relevant student performance data (Note 3, 1978).
A detailed description of the information saved in student histories and of
the curriculum data structures is also included.

Future possible additions and improvements would include making MAINSAIL
BIP available on various other machines, and writing a graphics display pack-
age and terminal-dependent procedures so that the graphics debugging package
(FLOW) and the graphics flow-charting option (REP) could be implemented.

PREVIOUS PAGE ,.
IS BLAN K °

REFERENCES

* Barr, A., Beard, M., & Atkinson, R. C. The computer as a tutorial laboratory:
The Stanford BIP project. International Journal of Man-Machine Studies,

• 1976, 8, 567-596.

- Beard, M., Barr, A. V., Gould, L., & Wescourt, K. Curriculum information
networks for computer-assisted instruction (NPRDC TR 78-18). San Diego:
Navy Personnel Research and Development Center, April 1978.

* Reiser, J. SAIL users manual (Artificial Intelligence Memo 289).
Stanford, CA: Stanford Artificial Intelligence Laboratory, Stanford
University, 1976.

Wilcox, C. R. MAINSAIL language reference manual. Stanford, CA: SUMEX

Computer Project, Stanford University Medical Center, 1977 (a).

* ~ Wilcox, C. R. The MAINSAIL project: Developing tools for software port-
ability. Proceedings of the First Annual Symposium on Computer Application
in Medical Care, IEEE Catalog No. 77 CH1270-8C, pp. 76-83, Washington, DC, 2
1977 (b).

REFERENCE NOTES

1 1. Beard, M. H., & Barr, A. V. The BASIC instructional program student
manual (NPRDC Special Rep. 77-2). San Diego: Navy Personnel Research
and Development Center, October 1976.

2. Dageforde, M. L., & Beard, M. H. The BASIC instructional program: Super-
visor's manual (NPRDC Tech. Note 78-10). San Diego: Navy Personnel
Research and Development Center, April 1978.

3. Dageforde, M. L. The BASIC instructional program: System documentation
(NPRDC Tech. Note 78-12). San Diego: Navy Personnel Research and Develop-
ment Center, April 1978.

4. Dageforde, M. L., Beard, M. H., & Barr, A. V. The BASIC instructional
program student manual: MAINSAIL conversion (NPRDC Tech. Note 78-9).
San Diego: Navy Personnel Research and Development Center, April 1978.

13-o.

",' 13 r.

...... - -. .-. . . . ° .. .- ,-.- i . i- -.-

- -

S. -- -,- .-

'a

3.,'p

3..

I
H

fr~
II

'A
F

6~
........

